Inflammatory response to acute myocardial infarction augments neointimal hyperplasia after vascular injury in a remote artery.

نویسندگان

  • Minoru Takaoka
  • Shiro Uemura
  • Hiroyuki Kawata
  • Kei-ichi Imagawa
  • Yukiji Takeda
  • Kimihiko Nakatani
  • Noriyuki Naya
  • Manabu Horii
  • Shigeru Yamano
  • Yoshihiro Miyamoto
  • Yasunao Yoshimasa
  • Yoshihiko Saito
چکیده

OBJECTIVE Percutaneous coronary intervention (PCI) is currently the most widely accepted treatment for acute myocardial infarction (AMI). It remains unclear, however, whether post-AMI conditions might exacerbate neointimal hyperplasia and restenosis following PCI. Given that both a medial smooth muscle cell lineage and a bone marrow (BM)-derived hematopoietic stem cell lineage are now thought to contribute to neointima formation, the primary aims of the present study were to determine whether AMI augments neointimal hyperplasia at sites of arterial injury, and whether BM-derived cells contribute to that process. METHODS AND RESULTS We simultaneously generated models of AMI and arterial injury in the same mice, some of which had received BM transplantation. We found that AMI augments neointimal hyperplasia at sites of femoral artery injury by approximately 35% (P<0.05), but that while BM-derived cells contributed to neointimal hyperplasia, they did not contribute to the AMI-related augmentation. Expression of interleukin (IL)-6 mRNA was approximately 7-fold higher in the neointimas of mice subjected to both AMI and arterial injury than in those of mice subjected to arterial injury alone. In addition, we observed increased synthesis of tumor necrosis factor (TNF)-alpha within infarcted hearts and TNF-alpha receptor type 1 (TNFR1) within injured arteries. Chronic treatment with pentoxifylline, which mainly inhibits TNF-alpha synthesis, reduced levels of circulating TNF-alpha and attenuated neointimal hyperplasia after AMI. CONCLUSIONS Conditions after AMI could exacerbate postangioplasty restenosis, not by increasing mobilization of BM-derived cells, but by stimulating signaling via TNF-alpha, TNFR1 and IL-6.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Importance of monocyte chemoattractant protein-1 pathway in neointimal hyperplasia after periarterial injury in mice and monkeys.

Neointimal hyperplasia is a major cause of restenosis after coronary intervention. Because vascular injury is now recognized to involve an inflammatory response, monocyte chemoattractant protein-1 (MCP-1) might be involved in underlying mechanisms of restenosis. In the present study, we demonstrate the important role of MCP-1 in neointimal hyperplasia after cuff-induced arterial injury. In the ...

متن کامل

Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia.

Occlusive vascular disease is a widespread abnormality leading to lethal or debilitating outcomes such as myocardial infarction and stroke. It is part of atherosclerosis and is evoked by clinical procedures including angioplasty and grafting of saphenous vein in bypass surgery. A causative factor is the switch in smooth muscle cells to an invasive and proliferative mode, leading to neointimal h...

متن کامل

In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia.

OBJECTIVES We examined the relative contributions of inflammation and arterial injury to neointimal formation in a porcine coronary overstretch restenosis model. BACKGROUND Previous studies established that stents cause neointimal proliferation proportional to injury. Although inflammation has been postulated to be a major contributor to restenosis after angioplasty, there is a paucity of dat...

متن کامل

Molecular Study of Vascular Endothelial Growth Factor Gene in Iranian Patients after Myocardial Infarction

Background: Stimulation of collateral artery growth (arteriogenesis) and/or capillary network growth (angiogenesis) would be beneficial to the patients with myocardial infarction. To understand the central role of vascular endothelial growth factor (VEGF) in biological angiogenesis, we performed molecular analysis of the VEGF gene in patients afflicted with acute myocardial infarction (AMI). Me...

متن کامل

Nucleotide-binding oligomerization domain protein 2 deficiency enhances neointimal formation in response to vascular injury.

OBJECTIVE Nucleotide-binding oligomerization domain protein 2 (NOD2) stimulates diverse inflammatory responses resulting in differential cellular phenotypes. To identify the role of NOD2 in vascular arterial obstructive diseases, we investigated the expression and pathophysiological role of NOD2 in a vascular injury model of neointimal hyperplasia. METHODS AND RESULTS We first analyzed for ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 26 9  شماره 

صفحات  -

تاریخ انتشار 2006